Although sparse neural networks have been studied extensively, the focus has been primarily on accuracy. In this work, we focus instead on network structure, and analyze three popular algorithms. We first measure performance when structure persists and weights are reset to a different random initialization, thereby extending experiments in Deconstructing Lottery Tickets (Zhou et al., 2019). This experiment reveals that accuracy can be derived from structure alone. Second, to measure structural robustness we investigate the sensitivity of sparse neural networks to further pruning after training, finding a stark contrast between algorithms. Finally, for a recent dynamic sparsity algorithm we investigate how early in training the structure emerges. We find that even after one epoch the structure is mostly determined, allowing us to propose a more efficient algorithm which does not require dense gradients throughout training. In looking back at algorithms for sparse neural networks and analyzing their performance from a different lens, we uncover several interesting properties and promising directions for future research.


翻译:尽管对稀疏的神经网络进行了广泛研究,但重点主要在于准确性。在这项工作中,我们侧重于网络结构,分析三种流行的算法。我们首先测量结构存续时的性能,而重量被重置到不同的随机初始化阶段,从而扩展了脱线彩票(Zhou等人,2019年)的实验。这一实验表明,精确性可以仅从结构上得出。第二,为了测量结构稳健性,我们调查了稀散神经网络在培训后进一步运行的敏感性,发现了各种算法之间的鲜明对比。最后,对于最近一种动态的超常算法,我们调查了结构在培训中的早期出现。我们发现,即便在一次撞击后,结构大多已经确定,使我们能够提出一种更有效的算法,而在整个培训过程中不需要密度梯度。在回顾稀疏的神经网络的算法并从不同角度分析其性能时,我们发现了一些有趣的特性和有希望的未来研究方向。

1
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
10+阅读 · 2020年2月15日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员