Federated learning is an emerging research paradigm enabling collaborative training of machine learning models among different organizations while keeping data private at each institution. Despite recent progress, there remain fundamental challenges such as lack of convergence and potential for catastrophic forgetting in federated learning across real-world heterogeneous devices. In this paper, we demonstrate that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts and hence improve federated learning over heterogeneous data. Concretely, we conduct the first rigorous empirical investigation of different neural architectures across a range of federated algorithms, real-world benchmarks, and heterogeneous data splits. Our experiments show that simply replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices, accelerate convergence, and reach a better global model, especially when dealing with heterogeneous data. We will release our code and pretrained models at https://github.com/Liangqiong/ViT-FL-main to encourage future exploration in robust architectures as an alternative to current research efforts on the optimization front.
翻译:联邦学习是一个新兴的研究模式,在不同组织之间对机器学习模式进行协作培训,同时保持每个机构的数据私密性。尽管最近取得了进展,但仍然存在一些基本挑战,例如缺乏趋同性,在现实世界各种装置的联结学习中可能发生灾难性的遗忘。在本文中,我们表明,基于关注的建筑(例如变异器)对分布变化相当有力,从而改善了对不同数据的联邦学习。具体地说,我们首次对各种神经结构进行了严格的实证调查,调查了各种联合算法、现实世界基准和多种数据分割。我们的实验显示,仅仅以变异器取代革命网络,就可以大大减少对先前装置的灾难性遗忘,加速趋同,并达到更好的全球模式,特别是在处理不同数据时。我们将在https://github.com/Liangqiong/ViT-FL-main发布我们的代码和预先训练模型,以鼓励今后在强大的结构中进行探索,作为当前在优化战线上的研究工作的替代办法。