Nonsmooth composite optimization problems under uncertainty are prevalent in various scientific and engineering applications. We consider risk-neutral composite optimal control problems, where the objective function is the sum of a potentially nonconvex expectation function and a nonsmooth convex function. To approximate the risk-neutral optimization problems, we use a Monte Carlo sample-based approach, study its asymptotic consistency, and derive nonasymptotic sample size estimates. Our analyses leverage problem structure commonly encountered in PDE-constrained optimization problems, including compact embeddings and growth conditions. We apply our findings to bang-bang-type optimal control problems and propose the use of a conditional gradient method to solve them effectively. We present numerical illustrations.
翻译:暂无翻译