The hierarchical quadratic programming (HQP) is commonly applied to consider strict hierarchies of multi-tasks and robot's physical inequality constraints during whole-body compliance. However, for the one-step HQP, the solution can oscillate when it is close to the boundary of constraints. It is because the abrupt hit of the bounds gives rise to unrealisable jerks and even infeasible solutions. This paper proposes the mixed control, which blends the single-axis model predictive control (MPC) and proportional derivate (PD) control for the whole-body compliance to overcome these deficiencies. The MPC predicts the distances between the bounds and the control target of the critical tasks, and it provides smooth and feasible solutions by prediction and optimisation in advance. However, applying MPC will inevitably increase the computation time. Therefore, to achieve a 500 Hz servo rate, the PD controllers still regulate other tasks to save computation resources. Also, we use a more efficient null space projection (NSP) whole-body controller instead of the HQP and distribute the single-axis MPCs into four CPU cores for parallel computation. Finally, we validate the desired capabilities of the proposed strategy via Simulations and the experiment on the humanoid robot Walker X.
翻译:等级二次编程( HQP) 通常用于考虑在全体合规过程中对多任务和机器人物理不平等的限制进行严格的等级分级。 但是,对于一步的 HQP 来说, 解决方案可以在接近约束界限的边缘时进行排列。 这是因为界限的突然撞击会产生不现实的混蛋, 甚至不可行的解决方案。 本文提议混合控制, 将单轴模型预测控制( MPC) 和比例衍生控制( PD) 混合起来, 以克服这些缺陷。 MPC 预测关键任务的界限与控制目标之间的距离, 并且通过预先预测和优化提供平稳和可行的解决方案。 然而, 应用 MPC 将不可避免地增加计算时间。 因此, 为了实现500 Hz 塞尔沃率, PD 控制器仍然管理其他任务以节省计算资源。 另外, 我们使用效率更高的空投( NSP) 全机控制器控制器来克服这些缺陷。 MPC 预测了关键任务的界限与控制器的控制器之间的距离, 并且通过预先预测和优化来提供单轴 XC 的实验能力。