In this paper, we consider a class of highly oscillatory Hamiltonian systems which involve a scaling parameter $\varepsilon\in(0,1]$. The problem arises from many physical models in some limit parameter regime or from some time-compressed perturbation problems. The solution of the model exhibits rapid temporal oscillations with $\mathcal{O}(1)$-amplitude and $\mathcal{O}(1/\varepsilon)$-frequency, which makes classical numerical methods inefficient. We apply the two-scale formulation approach to the problem and propose two new time-symmetric numerical integrators. The methods are proved to have the uniform second order accuracy for all $\varepsilon$ at finite times and some near-conservation laws in long times. Numerical experiments on a H\'{e}non-Heiles model, a nonlinear Schr\"{o}dinger equation and a charged-particle system illustrate the performance of the proposed methods over the existing ones.
翻译:在本文中,我们考虑的是一类高度悬浮的汉密尔顿系统,它涉及一个比例参数 $\ varepsilon\ in (0,1,1美元) 。 问题来自某些限制参数系统中的许多物理模型或某些时间压缩的扰动问题。 模型的解决方案显示出快速的时间振荡, 包括$\ mathcal{O}(1)$- amplation和$\ mathcal{O} (1/\varepsilon)$- 频率, 这使得传统的数值方法效率低下。 我们对问题采用了双尺度的配方方法, 并提出了两个新的时间对称数字集成器。 事实证明, 这种方法在有限的时间和一些近距离观测法中具有统一的第二顺序精确度。 在 H\\ { {e} non- heiles 模型、 非线性 Schr\} {o} 线性方程式和充电质系统上的数字实验, 展示了拟议方法对现有方法的性能。