In this paper, we consider a class of highly oscillatory Hamiltonian systems which involve a scaling parameter $\varepsilon\in(0,1]$. The problem arises from many physical models in some limit parameter regime or from some time-compressed perturbation problems. The solution of the model exhibits rapid temporal oscillations with $\mathcal{O}(1)$-amplitude and $\mathcal{O}(1/\varepsilon)$-frequency, which makes classical numerical methods inefficient. We apply the two-scale formulation approach to the problem and propose two new time-symmetric numerical integrators. The methods are proved to have the uniform second order accuracy for all $\varepsilon$ at finite times and some near-conservation laws in long times. Numerical experiments on a H\'{e}non-Heiles model, a nonlinear Schr\"{o}dinger equation and a charged-particle system illustrate the performance of the proposed methods over the existing ones.


翻译:在本文中,我们考虑的是一类高度悬浮的汉密尔顿系统,它涉及一个比例参数 $\ varepsilon\ in (0,1,1美元) 。 问题来自某些限制参数系统中的许多物理模型或某些时间压缩的扰动问题。 模型的解决方案显示出快速的时间振荡, 包括$\ mathcal{O}(1)$- amplation和$\ mathcal{O} (1/\varepsilon)$- 频率, 这使得传统的数值方法效率低下。 我们对问题采用了双尺度的配方方法, 并提出了两个新的时间对称数字集成器。 事实证明, 这种方法在有限的时间和一些近距离观测法中具有统一的第二顺序精确度。 在 H\\ { {e} non- heiles 模型、 非线性 Schr\} {o} 线性方程式和充电质系统上的数字实验, 展示了拟议方法对现有方法的性能。

0
下载
关闭预览

相关内容

【2020新书】Python文本分析,104页pdf
专知会员服务
99+阅读 · 2020年12月23日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
6+阅读 · 2020年3月16日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员