Complex wounds usually face partial or total loss of skin thickness, healing by secondary intention. They can be acute or chronic, figuring infections, ischemia and tissue necrosis, and association with systemic diseases. Research institutes around the globe report countless cases, ending up in a severe public health problem, for they involve human resources (e.g., physicians and health care professionals) and negatively impact life quality. This paper presents a new database for automatically categorizing complex wounds with five categories, i.e., non-wound area, granulation, fibrinoid tissue, and dry necrosis, hematoma. The images comprise different scenarios with complex wounds caused by pressure, vascular ulcers, diabetes, burn, and complications after surgical interventions. The dataset, called ComplexWoundDB, is unique because it figures pixel-level classifications from $27$ images obtained in the wild, i.e., images are collected at the patients' homes, labeled by four health professionals. Further experiments with distinct machine learning techniques evidence the challenges in addressing the problem of computer-aided complex wound tissue categorization. The manuscript sheds light on future directions in the area, with a detailed comparison among other databased widely used in the literature.
翻译:复杂的伤口通常会面临部分或完全的皮肤厚度丧失,通过二次意图而愈合。它们可以是急性或慢性的,会感染,缺血和组织坏死,并且与系统疾病有关。全球各地的研究机构报告无数病例,最终导致严重的公共健康问题,因为它们涉及人力资源(例如医生和保健专业人员)和对生活质量的负面影响。本文提供了一个新的数据库,用于对五类复杂伤口进行自动分类,即无声区、颗粒、纤维组织以及干死细胞、血肿。图像包括压力、血管溃疡、糖尿病、烧伤和手术干预后并发症造成的复杂伤口的不同情况。称为 " 复合健康数据库 " 的数据集是独特的,因为它从野生获得的27美元图像中得出了像素等级分类,即由四名保健专业人员在病人家中标注的图像。与不同的机器学习技术进一步实验证明了在解决计算机辅助的复杂伤口分类问题方面的挑战。手稿显示未来方向,在使用的其他文献中,广泛使用其他数据。