We show that estimators based on spectral regularization converge to the best approximation of a structural parameter in a class of nonidentified linear ill-posed inverse models. Importantly, this convergence holds in the uniform and Hilbert space norms. We describe several circumstances when the best approximation coincides with a structural parameter, or at least reasonably approximates it, and discuss how our results can be useful in the partial identification setting. Lastly, we document that identification failures have important implications for the asymptotic distribution of a linear functional of regularized estimators, which can have a weighted chi-squared component. The theory is illustrated for various high-dimensional and nonparametric IV regressions.
翻译:我们证明光谱规范的测算器与一组未识别的线性错误反向模型中结构参数的最佳近似相趋同。 重要的是,这种趋同在统一和希尔伯特空间规范中存在。 我们描述了一些最接近于结构参数或至少合理接近于结构参数的情况,并讨论了我们的结果如何在部分识别设置中有用。 最后,我们记录了识别失败对正常的测算器的线性功能的无症状分布具有重要影响,后者可能具有加权的奇异方形成分。我们用各种高维和非对称四的回归来说明理论。