We offer a new perspective on risk aggregation with FGM copulas. Along the way, we discover new results and revisit existing ones, providing simpler formulas than one can find in the existing literature. This paper builds on two novel representations of FGM copulas based on symmetric multivariate Bernoulli distributions and order statistics. First, we detail families of multivariate distributions with closed-form solutions for the cumulative distribution function or moments of the aggregate random variables. We order aggregate random variables under the convex order and provide methods to compute the cumulative distribution function of aggregate rvs when the marginals are discrete. Finally, we discuss risk-sharing and capital allocation, providing numerical examples for each.
翻译:我们从新的角度看女性生殖器残割阴极的风险集合问题。 沿着这条道路,我们发现了新的结果,并重新审视了现有的结果,提供了比现有文献中可以找到的更简单的公式。 本文以基于对称多变伯努利分布和命令统计的两种新型女性生殖器残割阴极表述为基础。 首先,我们详细介绍了多变分布的家族,为累积分配功能或总随机变量的时数提供了封闭式解决方案。 我们根据曲线顺序订购了总随机变量,并提供了在边缘区域离散时计算总 Rv 累积分配功能的方法。 最后,我们讨论了风险分担和资本分配,为每个变量提供了数字示例。