Capitalization normalization (truecasing) is the task of restoring the correct case (uppercase or lowercase) of noisy text. We propose a fast, accurate and compact two-level hierarchical word-and-character-based recurrent neural network model. We use the truecaser to normalize user-generated text in a Federated Learning framework for language modeling. A case-aware language model trained on this normalized text achieves the same perplexity as a model trained on text with gold capitalization. In a real user A/B experiment, we demonstrate that the improvement translates to reduced prediction error rates in a virtual keyboard application. Similarly, in an ASR language model fusion experiment, we show reduction in uppercase character error rate and word error rate.
翻译:资本化正常化(解释性)的任务是恢复噪音文字的正确情况(超大或低小情况),我们提议一个快速、准确和紧凑的基于字字字符的两级等级经常性神经网络模式,我们使用真写器在联邦语言模型学习框架中将用户生成的文字标准化。一个就这个标准化文本培训的有字词模型与经过黄金资本化的文本培训的模型具有同样的混淆性。在实际用户A/B的实验中,我们证明这些改进可以转换为在虚拟键盘应用程序中降低预测错误率。同样,在ASR语言模型聚合实验中,我们显示大写字符错误率和字词错误率的减少。