This paper presents an applied AI pipeline for realtime geolocation from noisy microblog streams, unifying statistical hashtag segmentation, part-of-speech-driven proper-noun detection, dependency parsing around disaster lexicons, lightweight named-entity recognition, and gazetteer-grounded disambiguation to infer locations directly from text rather than sparse geotags. The approach operationalizes information extraction under streaming constraints, emphasizing low-latency NLP components and efficient validation against geographic knowledge bases to support situational awareness during emergencies. In head to head comparisons with widely used NER toolkits, the system attains strong F1 while being engineered for orders-of-magnitude faster throughput, enabling deployment in live crisis informatics settings. A production map interface demonstrates end-to-end AI functionality ingest, inference, and visualization--surfacing locational signals at scale for floods, outbreaks, and other fastmoving events. By prioritizing robustness to informal text and streaming efficiency, GeoSense-AI illustrates how domain-tuned NLP and knowledge grounding can elevate emergency response beyond conventional geo-tag reliance.
翻译:本文提出一种应用于实时地理位置推断的AI流程,能够从嘈杂的微博流中提取位置信息。该流程统一了统计式话题标签分割、基于词性的专有名词检测、围绕灾害词典的依存句法分析、轻量级命名实体识别以及基于地名录的消歧方法,从而直接从文本而非稀疏的地理标签中推断位置。该方法在流式处理约束下实现了信息提取的可操作化,强调低延迟的自然语言处理组件,并依托地理知识库进行高效验证,以支持紧急情况下的态势感知。在与广泛使用的命名实体识别工具包的对比评估中,本系统在保持较高F1值的同时,实现了数量级级的处理速度提升,使其能够部署于实时的危机信息处理场景。一个实际运行的地图界面展示了端到端的AI功能——包括数据摄入、推断与可视化——从而为洪水、疫情爆发及其他快速演变的事件提供大规模的位置信号。通过优先保证对非正式文本的鲁棒性与流式处理效率,GeoSense-AI展示了领域定制的自然语言处理与知识基底的结合如何能够超越传统的地理标签依赖,提升应急响应能力。