We investigate how much quantum distributed algorithms can outperform classical distributed algorithms with respect to the message complexity (the overall amount of communication used by the algorithm). Recently, Dufoulon, Magniez and Pandurangan (PODC 2025) have shown a polynomial quantum advantage for several tasks such as leader election and agreement. In this paper, we show an exponential quantum advantage for a fundamental task: routing information between two specified nodes of a network. We prove that for the family of ``welded trees" introduced in the seminal work by Childs, Cleve, Deotto, Farhi, Gutmann and Spielman (STOC 2003), there exists a quantum distributed algorithm that transfers messages from the entrance of the graph to the exit with message complexity exponentially smaller than any classical algorithm. Our quantum algorithm is based on the recent "succinct" implementation of quantum walks over the welded trees by Li, Li and Luo (SODA 2024). Our classical lower bound is obtained by ``lifting'' the lower bound from Childs, Cleve, Deotto, Farhi, Gutmann and Spielman (STOC 2003) from query complexity to message complexity.
翻译:我们研究量子分布式算法在消息复杂度(算法使用的总通信量)方面能比经典分布式算法优越多少。最近,Dufoulon、Magniez 和 Pandurangan(PODC 2025)已在领导者选举和共识等多项任务中展示了多项式级别的量子优势。本文中,我们针对一项基本任务——在网络中两个指定节点间路由信息——证明了指数级的量子优势。我们证明,对于 Childs、Cleve、Deotto、Farhi、Gutmann 和 Spielman 在开创性工作(STOC 2003)中提出的“焊接树”图族,存在一种量子分布式算法,能以指数级低于任何经典算法的消息复杂度,将消息从图的入口传输到出口。我们的量子算法基于 Li、Li 和 Luo(SODA 2024)近期提出的在焊接树上实现量子行走的“简洁”方案。我们的经典下界是通过将 Childs、Cleve、Deotto、Farhi、Gutmann 和 Spielman(STOC 2003)工作中的查询复杂度下界“提升”至消息复杂度而获得的。