Modeling the complex relationships between multiple categorical response variables as a function of predictors is a fundamental task in the analysis of categorical data. However, existing methods can be difficult to interpret and may lack flexibility. To address these challenges, we introduce a penalized likelihood method for multivariate categorical response regression that relies on a novel subspace decomposition to parameterize interpretable association structures. Our approach models the relationships between categorical responses by identifying mutual, joint, and conditionally independent associations, which yields a linear problem within a tensor product space. We establish theoretical guarantees for our estimator, including error bounds in high-dimensional settings, and demonstrate the method's interpretability and prediction accuracy through comprehensive simulation studies.
翻译:暂无翻译