In recent years, convolutional neural networks (CNNs) have been applied successfully in many fields. However, such deep neural models are still regarded as black box in most tasks. One of the fundamental issues underlying this problem is understanding which features are most influential in image recognition tasks and how they are processed by CNNs. It is widely accepted that CNN models combine low-level features to form complex shapes until the object can be readily classified, however, several recent studies have argued that texture features are more important than other features. In this paper, we assume that the importance of certain features varies depending on specific tasks, i.e., specific tasks exhibit a feature bias. We designed two classification tasks based on human intuition to train deep neural models to identify anticipated biases. We devised experiments comprising many tasks to test these biases for the ResNet and DenseNet models. From the results, we conclude that (1) the combined effect of certain features is typically far more influential than any single feature; (2) in different tasks, neural models can perform different biases, that is, we can design a specific task to make a neural model biased toward a specific anticipated feature.


翻译:近年来,在很多领域成功地应用了进化神经网络(CNNs),然而,这些深层神经模型在多数任务中仍被视为黑盒。这个问题的根本问题之一是了解哪些特征在图像识别任务中影响最大,以及这些特征是如何被CNN处理的。人们普遍认为CNN模型将低层次特征结合在一起,形成复杂的形状,直到物体易于分类。然而,最近的一些研究认为,质谱特征比其他特征更重要。在本文中,我们假定某些特征的重要性因具体任务的不同而不同,即具体任务显示出某种特征的偏差。我们根据人类直觉设计了两种分类任务,以培养深层次神经模型来识别预期的偏差。我们设计了由许多任务组成的实验,以测试ResNet和DeensNet模型的这些偏差。我们从结果中得出结论:(1)某些特征的综合效应通常比任何单一特征都大得多;(2)在不同的任务中,神经模型可以产生不同的偏差,也就是说,我们可以设计一个具体任务,对特定预期特征产生偏差的神经模型。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
An Analysis of Object Embeddings for Image Retrieval
Arxiv
4+阅读 · 2019年5月28日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员