Resting-state fMRI has been shown to provide surrogate biomarkers for the analysis of various diseases. In addition, fMRI data helps in understanding the brain's functional working during resting state and task-induced activity. To improve the statistical power of biomarkers and the understanding mechanism of the brain, pooling of multi-center studies has become increasingly popular. But pooling the data from multiple sites introduces variations due to hardware, software, and environment. In this paper, we look at the estimation problem of hierarchical Sparsity Connectivity Patterns (hSCPs) in fMRI data acquired on multiple sites. We introduce a simple yet effective matrix factorization based formulation to reduce site-related effects while preserving biologically relevant variations. We leverage adversarial learning in the unsupervised regime to improve the reproducibility of the components. Experiments on simulated datasets display that the proposed method can estimate components with improved accuracy and reproducibility. We also demonstrate the improved reproducibility of the components while preserving age-related variation on a real dataset compiled from multiple sites.


翻译:此外,FMRI数据有助于了解大脑在休息状态和任务引起的活动期间的功能性工作。为了提高生物标志的统计能力和大脑的理解机制,将多中心研究集中起来越来越受欢迎。但是,从多个站点收集的数据会因硬件、软件和环境的不同而产生差异。在本文件中,我们研究了在多个站点获得的FMRI数据中等级分化连接模式的估计问题。我们采用了简单而有效的矩阵因子化,以减少与地点有关的影响,同时保留与生物有关的变异。我们在未受监督的系统中利用对抗性学习来提高部件的再生能力。模拟数据集实验显示,拟议的方法可以以更准确和更生的方式估计部件。我们还表明,在保存从多个站点收集的真实数据集时,组件的再生性提高了。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
13+阅读 · 2019年12月27日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月8日
Arxiv
0+阅读 · 2021年12月7日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
9+阅读 · 2019年4月19日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员