We consider near maximum-likelihood (ML) decoding of short linear block codes. In particular, we propose a novel decoding approach based on neural belief propagation (NBP) decoding recently introduced by Nachmani et al. in which we allow a different parity-check matrix in each iteration of the algorithm. The key idea is to consider NBP decoding over an overcomplete parity-check matrix and use the weights of NBP as a measure of the importance of the check nodes (CNs) to decoding. The unimportant CNs are then pruned. In contrast to NBP, which performs decoding on a given fixed parity-check matrix, the proposed pruning-based neural belief propagation (PB-NBP) typically results in a different parity-check matrix in each iteration. For a given complexity in terms of CN evaluations, we show that PB-NBP yields significant performance improvements with respect to NBP. We apply the proposed decoder to the decoding of a Reed-Muller code, a short low-density parity-check (LDPC) code, and a polar code. PB-NBP outperforms NBP decoding over an overcomplete parity-check matrix by 0.27-0.31 dB while reducing the number of required CN evaluations by up to 97%. For the LDPC code, PB-NBP outperforms conventional belief propagation with the same number of CN evaluations by 0.52 dB. We further extend the pruning concept to offset min-sum decoding and introduce a pruning-based neural offset min-sum (PB-NOMS) decoder, for which we jointly optimize the offsets and the quantization of the messages and offsets. We demonstrate performance 0.5 dB from ML decoding with 5-bit quantization for the Reed-Muller code.
翻译:我们考虑将短线性区块代码解码到接近最大值(ML),特别是,我们提议采用新颖的解码方法,其依据是Nachmani等人最近推出的神经信仰传播(NBP)解码法,其中我们允许在算法的每次迭代中采用不同的对等检查矩阵。关键的想法是考虑NBP解码过份的对等检查矩阵,并使用NBP的权重来衡量检查节点(CNs)对解码的重要性。然后,对不重要的CNBs进行修补。与NBP相比,在给定的固定对等矩阵中进行解码(NBP),拟议的对基于对等的对等信息进行解码(PBS-NBs),对NCRBS的对等分解码进行简短的对等码(NBBC),通过双倍的对等式对等码进行对等化(RBS-RBS),通过双倍的对RBS-RBS的对RBS的对等值(RBC)的对等值和对等性对等(RBC的对等(RBC)的对等值的对等(R的对等和对等的对等的对等(RBPPC的对等的对等),对等码,对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等,对等的对等的对等的对等的对等的对等的对等的对等,对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等,对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等,对等的对等的对等的对等的对等的对等的对等的对等的对等的对