Playtesting is an essential step in the game design process. Game designers use the feedback from playtests to refine their design. Game designers may employ procedural personas to automate the playtesting process. In this paper, we present two approaches to improve automated playtesting. First, we propose a goal-based persona model, which we call developing persona -- developing persona proposes a dynamic persona model, whereas the current persona models are static. Game designers can use the developing persona to model the changes that a player undergoes while playing a game. Additionally, a human playtester knows which paths she has tested before, and during the consequent tests, she may test different paths. However, RL agents disregard the previously generated trajectories. We propose a novel methodology that helps Reinforcement Learning (RL) agents to generate distinct trajectories than the previous trajectories. We refer to this methodology as Alternative Path Finder (APF). We present a generic APF framework that can be applied to all RL agents. APF is trained with the previous trajectories, and APF distinguishes the novel states from similar states. We use the General Video Game Artificial Intelligence (GVG-AI) and VizDoom frameworks to test our proposed methodologies. We use Proximal Policy Optimization (PPO) RL agent during experiments. First, we show that the playtest data generated by the developing persona cannot be generated using the procedural personas. Second, we present the alternative paths found using APF. We show that the APF penalizes the previous paths and rewards the distinct paths.


翻译:游戏设计者使用游戏测试的反馈来改进游戏测试过程。 游戏设计者可以使用游戏设计者使用游戏测试的反馈来改进游戏测试过程。 游戏设计者可以使用程序人来使游戏测试过程自动化。 在本文中, 我们提出两种方法来改进自动游戏测试。 首先, 我们提出一个基于目标的人型模型, 我们称之为开发人型 -- 开发人型模型, 而当前的人型模型是静态的。 游戏设计者可以使用开发人型模型来模拟玩游戏时玩游戏时所经历的改变。 此外, 游戏设计者可以使用游戏设计人型模型来模拟游戏设计的人型变化。 人类游戏设计者可以使用她之前测试的路径, 在随后的测试过程中, 她可以测试不同的路径。 然而, RL 代理者会忽略了先前的轨迹。 我们用 VIFA 测试人型模型展示了我们之前的游戏轨迹, 我们用 VFI 人型模型展示了我们之前的游戏轨迹, 我们用 VFIA 测试人型模型展示了我们之前的 VFA 。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
0+阅读 · 2021年9月26日
Arxiv
8+阅读 · 2021年5月20日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员