Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering.
翻译:强力和普遍的工具操纵要求了解不同工具的特性和价格。我们调查有关工具的语言信息(例如其几何、通用用途)是否有助于控制政策更快地适应某项任务的新工具。我们获得对各种自然语言工具的不同描述,并使用经过预先培训的语言模型来制作其特征说明。然后我们进行语言条件的元学习,学习能够有效适应新工具的政策,并有相应的文本描述。我们的结果显示,语言信息与元学习相结合,大大加快了包括推力、提升、扫荡和敲敲敲等若干操作任务的工具学习。