This paper presents a fully automatic framework for extracting editable 3D objects directly from a single photograph. Unlike previous methods which recover either depth maps, point clouds, or mesh surfaces, we aim to recover 3D objects with semantic parts and can be directly edited. We base our work on the assumption that most human-made objects are constituted by parts and these parts can be well represented by generalized primitives. Our work makes an attempt towards recovering two types of primitive-shaped objects, namely, generalized cuboids and generalized cylinders. To this end, we build a novel instance-aware segmentation network for accurate part separation. Our GeoNet outputs a set of smooth part-level masks labeled as profiles and bodies. Then in a key stage, we simultaneously identify profile-body relations and recover 3D parts by sweeping the recognized profile along their body contour and jointly optimize the geometry to align with the recovered masks. Qualitative and quantitative experiments show that our algorithm can recover high quality 3D models and outperforms existing methods in both instance segmentation and 3D reconstruction. The dataset and code of AutoSweep are available at https://chenxin.tech/AutoSweep.html.
翻译:本文为直接从一张照片中提取可编辑的 3D 对象提供了一个完全自动的框架。 与以前用来恢复深度地图、 点云或网状表面的方法不同, 我们的目标是用语义部分来回收3D 对象, 并且可以直接编辑。 我们的工作依据的假设是, 多数人造物体是由部件构成的, 这些部件可以完全由普通原始体来代表。 我们的工作是试图回收两类原始形状对象, 即通用的幼崽和通用圆筒。 为此, 我们建立了一个新颖的例识分化网络, 以便准确分离部分。 我们的地理网输出了一系列光滑滑的部位面罩, 标记为剖析和体。 然后在一个关键阶段, 我们同时确定剖析图- 体关系, 并恢复3D 部件, 沿着公认的剖析图沿其身体轮廓进行扫描, 并共同优化几组与回收的面具相一致。 定性和定量实验显示, 我们的算法可以回收高质量的 3D 模型, 并超越实例分解和 3D 重建中的现有方法。 数据设置和代码可在 http:// chemus. chrevely. survey.