This work considers multirate generalized-structure additively partitioned Runge-Kutta (MrGARK) methods for solving stiff systems of ordinary differential equations (ODEs) with multiple time scales. These methods treat different partitions of the system with different timesteps for a more targeted and efficient solution compared to monolithic single rate approaches. With implicit methods used across all partitions, methods must find a balance between stability and the cost of solving nonlinear equations for the stages. In order to characterize this important trade-off, we explore multirate coupling strategies, problems for assessing linear stability, and techniques to efficiently implement Newton iterations for stage equations. Unlike much of the existing multirate stability analysis which is limited in scope to particular methods, we present general statements on stability and describe fundamental limitations for certain types of multirate schemes. New implicit multirate methods up to fourth order are derived, and their accuracy and efficiency properties are verified with numerical tests.
翻译:这项工作考虑了多种通用结构加分的龙格-库塔(MrGARK)方法,用于解决具有多个时间尺度的硬性普通差分方程式系统(ODEs)的硬性系统。这些方法处理系统不同分区,与单一单一率方法相比,具有不同时间步骤,更具有针对性和效率的解决方案。所有分区都使用了隐含的方法,因此方法必须在稳定性和解决各个阶段的非线性方程式的成本之间找到平衡。为了确定这一重要的权衡特征,我们探索了多率组合战略、线性稳定性评估问题,以及高效实施阶段方程式牛顿迭代技术。与现有多率稳定性分析大不相同,后者的范围仅限于特定方法,我们提出了关于稳定性的一般性说明,并描述了某些类型的多率计划的基本限制。产生了直至第四级的新的隐性多率方法,其准确性和效率通过数字测试得到验证。