We present Instant Neural Radiance Fields Stylization, a novel approach for multi-view image stylization for the 3D scene. Our approach models a neural radiance field based on neural graphics primitives, which use a hash table-based position encoder for position embedding. We split the position encoder into two parts, the content and style sub-branches, and train the network for normal novel view image synthesis with the content and style targets. In the inference stage, we execute AdaIN to the output features of the position encoder, with content and style voxel grid features as reference. With the adjusted features, the stylization of novel view images could be obtained. Our method extends the style target from style images to image sets of scenes and does not require additional network training for stylization. Given a set of images of 3D scenes and a style target(a style image or another set of 3D scenes), our method can generate stylized novel views with a consistent appearance at various view angles in less than 10 minutes on modern GPU hardware. Extensive experimental results demonstrate the validity and superiority of our method.
翻译:我们提出了一种名为“即时神经辐射场风格化”的新型多视图图像风格化方法,用于3D场景。我们的方法基于神经图形学基元构建神经辐射场,使用基于哈希表的位置编码器进行位置嵌入。我们将位置编码器分为两个子分支,即内容和风格子分支,并在内容和风格目标上进行正常的新视图图像合成的网络训练。在推断阶段,我们对位置编码器的输出特征执行AdaIN,并使用内容和风格体素网格特征作为参考。通过调整特征,即可得到新视角图像的风格化效果。我们的方法将风格目标从风格图像扩展到场景图像集,无需额外的网络训练,即可生成具有一致外观的各个视角的风格化新视图,且仅需要使用现代GPU硬件不到10分钟的时间。广泛的实验结果证明了我们方法的有效性和优越性。