This paper studies a planar multiplayer Homicidal Chauffeur reach-avoid differential game, where each pursuer is a Dubins car and each evader has simple motion. The pursuers aim to protect a goal region cooperatively from the evaders. Due to the high-dimensional strategy space among pursuers, we decompose the whole game into multiple one-pursuer-one-evader subgames, each of which is solved in an analytical approach instead of solving Hamilton-Jacobi-Isaacs equations. For each subgame, an evasion region (ER) is introduced, based on which a pursuit strategy guaranteeing the winning of a simple-motion pursuer under specific conditions is proposed. Motivated by the simple-motion pursuer, a strategy for a Dubins-car pursuer is proposed when the pursuer-evader configuration satisfies separation condition (SC) and interception orientation (IO). The necessary and sufficient condition on capture radius, minimum turning radius and speed ratio to guarantee the pursuit winning is derived. When the IO is not satisfied (Non-IO), a heading adjustment pursuit strategy is proposed, and the condition to achieve IO within a finite time, is given. Then, a two-step pursuit strategy is proposed for the SC and Non-IO case. A non-convex optimization problem is introduced to give a condition guaranteeing the winning of the pursuer. A polynomial equation gives a lower bound of the non-convex problem, providing a sufficient and efficient pursuit winning condition. Finally, these pairwise outcomes are collected for the pursuer-evader matching. Simulations are provided to illustrate the theoretical results.
翻译:本文研究一个平面多玩者Homicidal Chauffeur 达免差异的游戏, 每一个追追者都是一辆Dubins汽车, 每个逃避者都有简单的动作。 追追者的目的是保护一个目标区域, 并合作防止逃避者。 由于追追追者之间的高维战略空间, 我们将整个游戏分解成多个单面的单面策略, 每一个都通过分析方法解决, 而不是解决汉密尔顿- Jacobi- Isaaacs 方程式。 对于每个子游戏, 每一个追追追追者都是一个区域( ER ), 并据此提出一个追追逐策略, 保证在特定条件下赢得一个简单动作追逐者, 由简单追逐者提出一个战略, 当追逐者符合隔离条件( SC) 和截取方向( IT) 时, 将整个游戏分解成一个条件。 捕获半径、 最小转半径和速度比率以保障追逐获胜。 当IO( NGO) 无法追逐策略被提议调整后, 提供一个非最后追逐结果。 。 在追逐时, 追逐时, 追逐时, 向一个不伸缩 A 向一个不最后追赶 A 向一个条件在Sl 要求 向一个固定的追赶 A, 的追赶 A 提供一个不折的追赶 A 。 的 追赶策略被提出一个 。