Federated learning is an emerging framework that builds centralized machine learning models with training data distributed across multiple devices. Most of the previous works about federated learning focus on the privacy protection and communication cost reduction. However, how to achieve fairness in federated learning is under-explored and challenging especially when testing data distribution is different from training distribution or even unknown. Introducing simple fairness constraints on the centralized model cannot achieve model fairness on unknown testing data. In this paper, we develop a fairness-aware agnostic federated learning framework (AgnosticFair) to deal with the challenge of unknown testing distribution. We use kernel reweighing functions to assign a reweighing value on each training sample in both loss function and fairness constraint. Therefore, the centralized model built from AgnosticFair can achieve high accuracy and fairness guarantee on unknown testing data. Moreover, the built model can be directly applied to local sites as it guarantees fairness on local data distributions. To our best knowledge, this is the first work to achieve fairness in federated learning. Experimental results on two real datasets demonstrate the effectiveness in terms of both utility and fairness under data shift scenarios.


翻译:联邦学习是一个新兴框架,它建立集中的机械学习模式,其培训数据分布于多个设备。以前关于联邦学习的工程大多侧重于隐私保护和通信成本的降低。然而,如何实现联邦学习的公平性,特别是在测试数据分布不同于培训分配或甚至未知的情况下,探索不足,而且具有挑战性。对中央模式引入简单的公平性限制,无法实现未知测试数据的公平性。在本文件中,我们开发了一个公平意识的、不可知的联邦学习框架(AgnosticFair),以应对未知测试分布的挑战。我们使用内核回声功能为每个培训样本分配损失功能和公平性制约方面的重新比重值。因此,从AgnosticFair构建的中央模型可以实现对未知测试数据的高度准确性和公正性的保证。此外,已经建好的模型可以直接应用于本地网站,因为它能保证当地数据分布的公平性。我们最了解的是,这是实现联邦学习公平性的第一个工作。两个真实数据集的实验结果显示了数据转换情景下的实用性和公正性。

1
下载
关闭预览

相关内容

【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
38+阅读 · 2019年12月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
PyTorch 学习笔记(七):PyTorch的十个优化器
极市平台
8+阅读 · 2019年5月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2020年11月23日
Arxiv
0+阅读 · 2020年11月19日
Arxiv
0+阅读 · 2020年11月18日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
38+阅读 · 2019年12月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
PyTorch 学习笔记(七):PyTorch的十个优化器
极市平台
8+阅读 · 2019年5月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员