In federated learning, communication cost is often a critical bottleneck to scale up distributed optimization algorithms to collaboratively learn a model from millions of devices with potentially unreliable or limited communication and heterogeneous data distributions. Two notable trends to deal with the communication overhead of federated algorithms are gradient compression and local computation with periodic communication. Despite many attempts, characterizing the relationship between these two approaches has proven elusive. We address this by proposing a set of algorithms with periodical compressed (quantized or sparsified) communication and analyze their convergence properties in both homogeneous and heterogeneous local data distribution settings. For the homogeneous setting, our analysis improves existing bounds by providing tighter convergence rates for both strongly convex and non-convex objective functions. To mitigate data heterogeneity, we introduce a local gradient tracking scheme and obtain sharp convergence rates that match the best-known communication complexities without compression for convex, strongly convex, and nonconvex settings. We complement our theoretical results and demonstrate the effectiveness of our proposed methods by several experiments on real-world datasets.


翻译:在联合学习中,通信成本往往是一个重要的瓶颈,无法扩大分布式优化算法,以便从数以百万计可能不可靠或有限的通信和数据分布不均匀的设备中合作学习模型。处理联合算法通信间接费用的两个显著趋势是梯度压缩和定期通信本地计算。尽管有许多尝试,但这两种方法之间关系的特征证明是难以实现的。我们通过提出一套定期压缩(量化或封闭)通信的算法,分析其同质和异质本地数据分布环境中的趋同特性来解决这一问题。关于同质设置,我们的分析改进了现有界限,为很强的 convex 和非 convex 目标功能提供了更严格的趋同率。为了减轻数据差异,我们采用了本地梯度跟踪办法,并获得与最著名的通信复杂程度相匹配的快速趋同率,而无需对 convex、强的 convex 和非convex 设置进行压缩。我们补充了我们的理论结果,并通过对现实世界数据集进行的若干实验来证明我们拟议方法的有效性。

1
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
专知会员服务
83+阅读 · 2020年5月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
已删除
将门创投
7+阅读 · 2019年10月15日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月10日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
专知会员服务
83+阅读 · 2020年5月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员