In this paper, we study a block cipher based on cellular automata, proposed by Seredynski and Bouvry in \cite{semabo04} against \emph{plain-text avalanche criteria} and \emph{randomness} tests. Our experiments shows that Seredynski-Bouvry encryption scheme does not pass some NIST statistical tests by neighborhood radius less than three. It also showed that if the CA rule is selected carelessly, it weaken the security of scheme. Therefor, the selection of CA-rule as part of key can not be left to the user. Hence, cryptographic properties such as balancedness and non-linearity should be considered in the selection of CA-rules. This approach is more compliant with Kerckhoffs principle. So security should depend just on security of final data. We also improve Seredynski-Bouvry encryption scheme to satisfy strict avalanche criteria and NIST statistical test suite in about half number of iterations comparing to original scheme. This improvement is achieved by change in the definition of neighborhood.
翻译:在本文中,我们研究了Seredynski和Bouvry在\cite{semabo04}中针对 emph{plain-text avalanche标准} 和\emph{randomness} 测试提出的基于蜂窝自动磁盘的块式密码。 我们的实验表明, Seredynski-Bouvry 加密方案没有通过一些邻里半径不到3个的NIST统计测试。 它还表明,如果CA规则被不小心地选中,它会削弱计划的安全性。 因此, CA规则作为钥匙的一部分的选择不能留给用户。 因此, 在选择 CA规则时, 应当考虑诸如平衡和非线性等加密特性。 这个方法更符合 Kerckhoff 原则。 因此安全性应该仅仅依靠最终数据的安全性。 我们还改进了Seredynski- Bouvry 加密方案, 以满足严格的Valanche标准, 和 NIST 统计测试套件在大约一半的迭代比原始方案时, 能够实现这一改进。