We exhibit an unambiguous k-DNF formula that requires CNF width $\tilde{\Omega}(k^2)$, which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon--Saks--Seymour problem in graph theory (posed in 1991), which asks: How large a gap can there be between the chromatic number of a graph and its biclique partition number? Our result is also known to imply several other improved separations in query and communication complexity.
翻译:我们展示了一个清晰的 k- DNF 公式, 它需要 CNF 宽度 $\ tilde\ Omega}( k ⁇ 2) $, 最符合对数因素。 因此, 在图形理论( 于1991年公布 ) 中, 我们找到了接近最佳的 Alon- Saks- Seymour 问题解决方案 。 该公式询问: 图表的色谱数与其双球分区号之间会有多大差距? 我们的结果还表明在查询和通讯复杂度方面还有其他几种更好的分隔。