We exhibit an unambiguous k-DNF formula that requires CNF width $\tilde{\Omega}(k^2)$, which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon--Saks--Seymour problem in graph theory (posed in 1991), which asks: How large a gap can there be between the chromatic number of a graph and its biclique partition number? Our result is also known to imply several other improved separations in query and communication complexity.


翻译:我们展示了一个清晰的 k- DNF 公式, 它需要 CNF 宽度 $\ tilde\ Omega}( k ⁇ 2) $, 最符合对数因素。 因此, 在图形理论( 于1991年公布 ) 中, 我们找到了接近最佳的 Alon- Saks- Seymour 问题解决方案 。 该公式询问: 图表的色谱数与其双球分区号之间会有多大差距? 我们的结果还表明在查询和通讯复杂度方面还有其他几种更好的分隔。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
图计算加速架构综述
专知会员服务
49+阅读 · 2021年4月5日
领域知识图谱研究综述
专知会员服务
141+阅读 · 2020年8月2日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月29日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
8+阅读 · 2018年4月12日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
图计算加速架构综述
专知会员服务
49+阅读 · 2021年4月5日
领域知识图谱研究综述
专知会员服务
141+阅读 · 2020年8月2日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月29日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
8+阅读 · 2018年4月12日
Top
微信扫码咨询专知VIP会员