We present MapTR, a structured end-to-end framework for efficient online vectorized HD map construction. We propose a unified permutation-based modeling approach, i.e., modeling map element as a point set with a group of equivalent permutations, which avoids the definition ambiguity of map element and eases learning. We adopt a hierarchical query embedding scheme to flexibly encode structured map information and perform hierarchical bipartite matching for map element learning. MapTR achieves the best performance and efficiency among existing vectorized map construction approaches on nuScenes dataset. In particular, MapTR-nano runs at real-time inference speed ($25.1$ FPS) on RTX 3090, $8\times$ faster than the existing state-of-the-art camera-based method while achieving $3.3$ higher mAP. MapTR-tiny significantly outperforms the existing state-of-the-art multi-modality method by $13.5$ mAP while being faster. Qualitative results show that MapTR maintains stable and robust map construction quality in complex and various driving scenes. Abundant demos are available at \url{https://github.com/hustvl/MapTR} to prove the effectiveness in real-world scenarios. MapTR is of great application value in autonomous driving. Code will be released for facilitating further research and application.
翻译:我们提出“地图”框架,这是高效在线矢量制HD地图构建的结构性端到端框架。我们建议采用统一的基于离位模型方法,即将地图元素建模成像为一组等式的点,避免地图元素的定义模糊,便于学习。我们采用一种等级查询嵌入计划,以灵活编码结构化的地图信息,并为地图元素学习进行等级双方匹配。MapTR在 nuScenes 数据集的现有矢量制地图构建方法中实现最佳性能和效率。特别是,在 RTX 3090 上以实时推断速度运行(25.1美元FPS),将地图元素建模要素建模成一个点,以相当于等量的一组相等的成型,避免地图元素的模糊,避免地图元素的模糊,避免地图建模,避免地图建模,同时实现3.3美元更高的 mAP。MapTR-tiny大大地超越了现有的状态-最先进的多调方法,在速度中将达到135美元 mAP。定性结果显示,在复杂和各种驱动力图图中将保持稳定和稳的地图建设质量/Mnmattv