Bayesian modeling provides a principled approach to quantifying uncertainty in model parameters and structure and has seen a surge of applications in recent years. Despite a lot of existing work on an overarching Bayesian workflow, many individual steps still require more research to optimize the related decision processes. In this paper, we present results from a large simulation study of Bayesian generalized linear models for double- and lower-bounded data, where we analyze metrics on convergence, parameter recoverability, and predictive performance. We specifically investigate the validity of using predictive performance as a proxy for parameter recoverability in Bayesian model selection. Results indicate that -- for a given, causally consistent predictor term -- better out-of-sample predictions imply lower parameter RMSE, lower false positive rate, and higher true positive rate. In terms of initial model choice, we make recommendations for default likelihoods and link functions. We also find that, despite their lacking structural faithfulness for bounded data, Gaussian linear models show error calibration that is on par with structural faithful alternatives.
翻译:贝叶斯模型为量化模型参数和结构的不确定性提供了一种原则性方法,近年来出现了应用激增的情况。尽管目前对贝叶斯人总体工作流程做了大量工作,但许多个别步骤仍然需要进行更多的研究,以优化相关决策程序。在本文件中,我们介绍了对巴伊斯人通用线性模型进行大规模模拟研究的结果,该模拟研究对双重和较低范围数据进行了分析,我们分析了关于趋同、参数可恢复性和预测性绩效的衡量标准。我们特别调查了使用预测性业绩作为贝叶斯人模型选择中参数可恢复性的一个替代物的有效性。结果显示,就特定、因果一致的预测术语而言,更好的抽样预测意味着较低的参数RMSE、较低的假正率和更高的真实正率。在初步模型选择方面,我们提出了关于默认可能性和关联功能的建议。我们还发现,尽管高亚线性模型在结构上缺乏对约束性数据的忠实性,但显示与结构忠实替代品相匹配的错误校准。