大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这两者的框架. 变分推断把推断看作优化问题: 我们尝试根据某种距离度量来寻找一个与真实后验尽可能接近的分布(或者类似分布的表示).

精品内容

【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
19+阅读 · 2021年12月18日
专知会员服务
48+阅读 · 2021年8月1日
专知会员服务
51+阅读 · 2020年12月10日
WSDM 2020教程《深度贝叶斯数据挖掘》,附257页PPT下载
专知会员服务
156+阅读 · 2020年2月7日
参考链接
微信扫码咨询专知VIP会员