Pinching Antennas (PAs) represent a revolutionary flexible antenna technology that leverages dielectric waveguides and electromagnetic coupling to mitigate large-scale path loss. This letter is the first to explore channel estimation for Pinching-Antenna SyStems (PASS), addressing their uniquely ill-conditioned and underdetermined channel characteristics. In particular, two efficient deep learning-based channel estimators are proposed. 1) PAMoE: This estimator incorporates dynamic padding, feature embedding, fusion, and mixture of experts (MoE) modules, which effectively leverage the positional information of PAs and exploit expert diversity. 2) PAformer: This Transformer-style estimator employs the self-attention mechanism to predict channel coefficients in a per-antenna manner, which offers more flexibility to adaptively deal with dynamic numbers of PAs in practical deployment. Numerical results demonstrate that 1) the proposed deep learning-based channel estimators outperform conventional methods and exhibit excellent zero-shot learning capabilities, and 2) PAMoE delivers higher channel estimation accuracy via MoE specialization, while PAformer natively handles an arbitrary number of PAs, trading self-attention complexity for superior scalability.


翻译:捏合天线(PA)是一种革命性的柔性天线技术,它利用介质波导和电磁耦合来缓解大规模路径损耗。本文首次探讨了用于捏合天线系统(PASS)的信道估计问题,针对其独特的病态和欠定信道特性提出了解决方案。具体而言,我们提出了两种高效的基于深度学习的信道估计器。1) PAMoE:该估计器结合了动态填充、特征嵌入、融合以及专家混合(MoE)模块,有效利用了PA的位置信息并发挥了专家多样性。2) PAformer:这种Transformer风格的估计器采用自注意力机制,以按天线的方式预测信道系数,这为实际部署中自适应处理动态数量的PA提供了更大的灵活性。数值结果表明:1) 所提出的基于深度学习的信道估计器性能优于传统方法,并展现出优异的零样本学习能力;2) PAMoE通过MoE专业化实现了更高的信道估计精度,而PAformer则原生支持任意数量的PA,以自注意力复杂度为代价换取了卓越的可扩展性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员