Gaussian mixture reduction (GMR) is the problem of approximating a high order Gaussian mixture by one with lower order. It is widely used in density estimation, recursive tracking in hidden Markov model, and belief propagation. In this work, we show that the GMR can be formulated as an optimization problem which minimizes the composite transportation divergence (CTD) between two mixtures. The optimization problem can be solved by an easy-to-implement Majorization-Minimization (MM) algorithm. We show that the MM algorithm converges under general conditions. One popular computationally efficient approach for GMR is the clustering based iterative algorithms. However, these algorithms lack a theoretical guarantee whether they converge or attain some optimality targets when they do. We show that existing clustering-based algorithms are special cases of our MM algorithm can their theoretical properties are therefore established. We further show the performance of the clustering-based algorithms can be further improved by choosing various cost function in the CTD. Numerical experiments are conducted to illustrate the effectiveness of our proposed extension.
翻译:Gausian 混合物减少( GMR) 是一个高排序混合物被低顺序混合的问题。 它被广泛用于密度估计、 隐藏的Markov 模型的循环跟踪和信仰传播。 在这项工作中, 我们显示, GMR 可以作为一个优化问题, 最大限度地减少两种混合物之间的复合运输差异( CTD) 。 优化问题可以通过简单到实施主要- 最小化( MMM) 算法来解决。 我们显示MM 算法在一般条件下会合。 GMR 一种流行的高效计算法是基于集群的迭代算法。 但是, 这些算法缺乏理论上的保证, 它们是聚合的还是达到某种最佳目标的。 我们显示, 现有的基于集群的算法是我们 MM 算法的特殊案例, 因而可以确立其理论特性。 我们进一步显示, 集群算法的性能可以通过在 CTD 中选择各种成本功能来进一步改进。 进行数值实验是为了说明我们提议的扩展的效果。