Neuromorphic computing mimics the neural activity of the brain through emulating spiking neural networks. In numerous machine learning tasks, neuromorphic chips are expected to provide superior solutions in terms of cost and power efficiency. Here, we explore the application of Loihi, a neuromorphic computing chip developed by Intel, for the computer vision task of image retrieval. We evaluated the functionalities and the performance metrics that are critical in content-based visual search and recommender systems using deep-learning embeddings. Our results show that the neuromorphic solution is about 2.5 times more energy-efficient compared with an ARM Cortex-A72 CPU and 12.5 times more energy-efficient compared with NVIDIA T4 GPU for inference by a lightweight convolutional neural network without batching while maintaining the same level of matching accuracy. The study validates the potential of neuromorphic computing in low-power image retrieval, as a complementary paradigm to the existing von Neumann architectures.
翻译:神经形态计算模拟神经神经网络模拟大脑神经活动。 在许多机器学习任务中, 神经形态芯片预计将在成本和电力效率方面提供优异的解决方案。 在这里, 我们探索了Loihi(由Intel开发的神经形态计算芯片)的应用, 用于计算机图像检索的视觉任务。 我们评估了在内容基础视觉搜索和建议系统中使用深层学习嵌入器至关重要的功能和性能衡量标准。 我们的结果表明, 神经形态解决方案比ARM Cortex- A72 CPU高2.5倍, 与NVIDIA T4 GPU相比,能效高12倍于NVIDIA T4 GPU, 用于轻度神经神经神经网络的推断,而没有分批,同时又保持同样的精确度。 这项研究验证了在低能量图像检索中神经形态计算的潜力, 作为对现有的 von Neumann 结构的补充范例。