The objective of this work is to explore how to effectively and efficiently adapt pre-trained foundation models to various downstream tasks of image semantic segmentation. Conventional methods usually fine-tuned the whole networks for each specific dataset and it was burdensome to store the massive parameters of these networks. A few recent works attempted to insert some trainable parameters into the frozen network to learn visual prompts for efficient tuning. However, these works significantly modified the original structure of standard modules, making them inoperable on many existing high-speed inference devices, where standard modules and their parameters have been embedded. To facilitate prompt-based semantic segmentation, we propose a novel Inter-Stage Prompt-Matched Framework, which maintains the original structure of the foundation model while generating visual prompts adaptively for task-oriented tuning. Specifically, the pre-trained model is first divided into multiple stages, and their parameters are frozen and shared for all semantic segmentation tasks. A lightweight module termed Semantic-aware Prompt Matcher is then introduced to hierarchically interpolate between two stages to learn reasonable prompts for each specific task under the guidance of interim semantic maps. In this way, we can better stimulate the pre-trained knowledge of the frozen model to learn semantic concepts effectively on downstream datasets. Extensive experiments conducted on five benchmarks show that the proposed method can achieve a promising trade-off between parameter efficiency and performance effectiveness.


翻译:这项工作的目的是探索如何有效和高效地使经过培训的建模模型适应图像语义分割的各种下游任务。常规方法通常对每个特定数据集的整个网络进行微调,并给存储这些网络的大量参数造成负担。最近的一些工作试图在冻结的网络中插入一些可培训的参数,以学习高效调控的视觉提示。然而,这些工程大大修改了标准模块的原始结构,使其无法用于许多现有的高速推断装置,在这些装置中,标准模块及其参数已经嵌入了标准模块及其参数。为了便利迅速基于语义分割,我们提议了一个新型的跨系统快速匹配框架,以维持基础模型的原始结构,同时根据面向任务的调整生成视觉提示。具体地说,预先培训的模型首先分为多个阶段,其参数被冻结并共享到所有语义分割任务中。一个称为Semmanti-aware 快速匹配的轻度模块,随后被引入分级跨系统,在两个阶段之间学习每个具体任务的合理提示,在临时精度精度精确度模型指导下游基准下,我们可以更好地学习关于临时精度的精度测试方法的精度分析方法。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
46+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员