Within mobility systems, the presence of self-interested users can lead to aggregate routing patterns that are far from the societal optimum which could be achieved by centrally controlling the users' choices. In this paper, we design a fair incentive mechanism to steer the selfish behavior of the users to align with the societally optimal aggregate routing. The proposed mechanism is based on an artificial currency that cannot be traded or bought, but only spent or received when traveling. Specifically, we consider a parallel-arc network with a single origin and destination node within a repeated game setting whereby each user chooses from one of the available arcs to reach their destination on a daily basis. In this framework, taking faster routes comes at a cost, whereas taking slower routes is incentivized by a reward. The users are thus playing against their future selves when choosing their present actions. To capture this complex behavior, we assume the users to be rational and to minimize an urgency-weighted combination of their immediate and future discomfort. To design the optimal pricing, we first derive a closed-form expression for the best individual response strategy. Second, we formulate the pricing design problem for each arc to achieve the societally optimal aggregate flows, and reformulate it so that it can be solved with gradient-free optimization methods. Our numerical simulations show that it is possible to achieve a near-optimal routing whilst significantly reducing the users' perceived discomfort when compared to a centralized optimal but urgency-unaware policy.


翻译:在移动系统中,自利用户的存在可能导致聚合路由模式与中央控制用户选择所能实现的社会最优状态相差甚远。本文设计了一种公平的激励机制,以引导用户的自私行为与社会最优的聚合路由保持一致。所提出的机制基于无法交易或购买,而只能在旅行时花费或接收的人工货币。具体而言,在每日的重复博弈环境中,在一条起点和终点的平行弧网络中,每个用户从可用的弧线路径中选择到达他们的目的地。在该框架下,快速路径的选择会带来成本,而慢速路径的选择是通过奖励来激励的。因此,当用户在选择自己的行为时,他们会与未来的自我对抗。为了捕捉这种复杂的行为,我们假定用户是理性的,他们在最小化考虑其立即和未来不适程度的紧急权重组合时作出选择。为了设计最佳的定价策略,我们首先推导了最佳个体响应策略的封闭式表达式。其次,我们为每个弧线路径制定了定价设计问题,以实现社会最优的聚合流,并将其重新制定为可以使用无梯度优化方法解决的问题。我们的数值模拟表明,与集中式最优但没有考虑紧急情况的策略相比,我们可以实现近乎最优的路径选择,同时显著减少用户的感知不适。

0
下载
关闭预览

相关内容

多智能体顶级会议AAMAS2022最佳论文
专知会员服务
61+阅读 · 2022年5月15日
【课程推荐】人工智能导论:Introduction to Articial Intelligence
专知会员服务
100+阅读 · 2019年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关VIP内容
多智能体顶级会议AAMAS2022最佳论文
专知会员服务
61+阅读 · 2022年5月15日
【课程推荐】人工智能导论:Introduction to Articial Intelligence
专知会员服务
100+阅读 · 2019年12月20日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员