Gun violence is a severe problem in the world, particularly in the United States. Deep learning methods have been studied to detect guns in surveillance video cameras or smart IP cameras and to send a real-time alert to security personals. One problem for the development of gun detection algorithms is the lack of large public datasets. In this work, we first publish a dataset with 51K annotated gun images for gun detection and other 51K cropped gun chip images for gun classification we collect from a few different sources. To our knowledge, this is the largest dataset for the study of gun detection. This dataset can be downloaded at www.linksprite.com/gun-detection-datasets. We present a gun detection system using a smart IP camera as an embedded edge device, and a cloud server as a manager for device, data, alert, and to further reduce the false positive rate. We study to find solutions for gun detection in an embedded device, and for gun classification on the edge device and the cloud server. This edge/cloud framework makes the deployment of gun detection in the real world possible.
翻译:枪支暴力是全世界,特别是美国的一个严重问题。 已经研究过深层次的学习方法,在监控摄像机或智能IP摄像机中探测枪支,并向保安人员发出实时警报。 枪支检测算法的开发问题之一是缺乏大型公共数据集。 在这项工作中,我们首先用51K号附加注释枪支图像发布数据集,用于枪支检测,并公布其他51K号枪支芯片图像,用于枪支分类。 据我们所知,这是用于枪支检测研究的最大数据集。 这个数据集可以在www.linksprite.com/gun-dection-dataset下载。 我们展示了使用智能IP相机作为嵌入边缘装置的枪支检测系统,以及一个云服务器作为设备、数据、警报和进一步降低假阳率的管理器。 我们研究如何找到在嵌入装置中探测枪支的解决方案,以及在边缘装置和云服务器上进行枪支分类。 这个边缘/宽度框架使得在现实世界中部署枪支检测成为可能。