In this article, we develop the basic theory of digital topological groups. The basic definitions directly lead to two separate categories, based on the details of the continuity required of the group multiplication. We define $\NP_1$- and $\NP_2$-digital topological groups, and investigate their properties and algebraic structure. The $\NP_2$ category is very restrictive, and we give a complete classification of $\NP_2$-digital topological groups. We also give many examples of $\NP_1$-digital topological groups. We define digital topological group homomorphisms, and describe the digital counterpart of the first isomorphism theorem.
翻译:在本条中,我们发展了数字表层组的基本理论。基本定义直接导致两个不同的类别,其依据是该组乘法所需的连续性细节。我们定义了$NP_1美元和$NP_2美元-数字层组,并调查了它们的特性和代数结构。$NP_2美元类别非常严格,我们给出了$\NP_2美元-数字层组的完整分类。我们还提供了许多关于$\NP_1美元-数字层组的例子。我们定义了数字表层组同质主义,并描述了第一个无形态理论的数字对应方。