Gross domestic product (GDP) is the most widely used indicator in macroeconomics and the main tool for measuring a country's economic ouput. Due to the diversity and complexity of the world economy, a wide range of models have been used, but there are challenges in making decadal GDP forecasts given unexpected changes such as pandemics and wars. Deep learning models are well suited for modeling temporal sequences have been applied for time series forecasting. In this paper, we develop a deep learning framework to forecast the GDP growth rate of the world economy over a decade. We use Penn World Table as the source of our data, taking data from 1980 to 2019, across 13 countries, such as Australia, China, India, the United States and so on. We test multiple deep learning models, LSTM, BD-LSTM, ED-LSTM and CNN, and compared their results with the traditional time series model (ARIMA,VAR). Our results indicate that ED-LSTM is the best performing model. We present a recursive deep learning framework to predict the GDP growth rate in the next ten years. We predict that most countries will experience economic growth slowdown, stagnation or even recession within five years; only China, France and India are predicted to experience stable, or increasing, GDP growth.
翻译:国内生产总值(GDP)是宏观经济中最广泛使用的指标,也是衡量一国经济产出的主要工具。由于世界经济的多样性和复杂性,我们使用了一系列广泛的模型,但是,由于流行病和战争等意外变化,在作出十年度国内生产总值预测方面却存在挑战。深层次的学习模型非常适合用于时间序列预测的模型时间序列。在本文中,我们开发了一个深度学习框架,以预测世界经济十年来的增长速度。我们用本世界表格作为数据来源,从1980年到2019年,以澳大利亚、中国、印度、美国等13个国家的数据作为数据来源。我们测试多种深层次的学习模型、LSTM、BD-LSTM、ED-LSTM和CNNCM,并将其结果与传统的时间序列模型(ARIMA、VAR)进行比较。我们的结果显示,ED-LSTM是最佳的模型。我们提出了一个循环的深层次学习框架,以预测下一个十年内GDP增长率。我们预测,大多数国家将经历经济增长、停滞或衰退,甚至五年内将经历中国的经济增长、停滞或衰退。