We compare the performance of several variations of the Quantum Alternating Operator Ansatz (QAOA) on constrained optimization problems. Specifically, we study the Clique, Ring, and Grover mixers as well as the traditional objective value and recently introduced threshold-based phase separators. These are studied through numerical simulation on k-Densest Subgraph, Maximum k-Vertex Cover, and Maximum Bisection problems of size up to n=18 on Erd\"os-Renyi graphs. We show that only one of these QAOA variations, the Clique mixer with objective value phase separator, outperforms Grover-style unstructured search, with a potentially super-polynomial advantage.
翻译:我们比较了量子交换操作员Ansatz(QAOA)在限制优化问题上的若干变异性的表现。 具体来说, 我们研究了克力、 环和格罗弗混合器以及传统客观值, 以及最近引入的基于阈值的阶段分隔器。 这些都通过k- Densest Subgraph、 最大k- Vertex 覆盖和在ERD\"os- Renyi 图形上直到 n= 18 的尺寸最大分解问题进行数字模拟来研究。 我们显示,只有其中的一种变异, 具有客观价值阶段分离器的克力混合器, 超越了格罗弗式的无结构搜索, 具有潜在的超级极合优势 。