Recent hype surrounding the increasing sophistication of language processing models has renewed optimism regarding machines achieving a human-like command of natural language. Research in the area of natural language understanding (NLU) in artificial intelligence claims to have been making great strides in this area, however, the lack of conceptual clarity/consistency in how 'understanding' is used in this and other disciplines makes it difficult to discern how close we actually are. In this interdisciplinary research thesis, I integrate insights from cognitive science/psychology, philosophy of mind, and cognitive linguistics, and evaluate it against a critical review of current approaches in NLU to explore the basic requirements--and remaining challenges--for developing artificially intelligent systems with human-like capacities for language use and comprehension.
翻译:最近围绕语言处理模式日益精密的周而复始,使人们对机器获得人性化自然语言指挥的机理重新感到乐观。在自然语言理解领域对人工智能要求的研究(NLU)在这一领域取得了长足进步,然而,由于在概念上缺乏清晰度/一致性,因此难以辨别我们在这个学科和其他学科中如何使用“理解”一词,因此难以辨别我们实际上有多接近。 在这个跨学科研究论文中,我综合了认知科学/心理学、思想哲学和认知语言学的见解,并对照对新语言学当前方法的批判性审查,对新语言学当前方法进行了评估,以探索开发具有类似语言使用和理解能力的人工智能系统的基本要求和剩余挑战。