Atomistic simulations have now established themselves as an indispensable tool in understanding deformation mechanisms of materials at the atomic scale. Large scale simulations are regularly used to study the behavior of polycrystalline materials at the nanoscale. In this work, we propose a method for grain segmentation of an atomistic configuration using an unsupervised machine learning algorithm that clusters atoms into individual grains based on their orientation. The proposed method, called the Orisodata algorithm, is based on the iterative self-organizing data analysis technique and is modified to work in the orientation space. The working of the algorithm is demonstrated on a 122 grain nanocrystalline thin film sample in both undeformed and deformed states. The Orisodata algorithm is also compared with two other grain segmentation algorithms available in the open-source visualization tool Ovito. The results show that the Orisodata algorithm is able to correctly identify deformation twins as well as regions separated by low angle grain boundaries. The model parameters have intuitive physical meaning and relate to similar thresholds used in experiments, which not only helps obtain optimal values but also facilitates easy interpretation and validation of results.


翻译:原子模拟现已成为了解原子规模材料变形机制的一个不可或缺的工具。 大规模模拟经常用于研究纳米尺度多晶素材料的行为。 在这项工作中,我们提出一种方法,使用一种未经监督的机器学习算法,将原子分组成以其方向为基础的个别粒子,对原子结构进行粒分解。 提议的方法称为Orisodata算法,以迭代自我组织的数据分析技术为基础,并被修改为定向空间的工作。 算法的工作在一个122颗粒纳米晶素薄薄膜样本上演示,在非畸形和畸形状态中进行演示。 Orisodata算法也与公开源可视化工具Ovito中的其他两种谷物分解算法进行了比较。 结果表明,Orisodata算法能够正确识别低角粒子界限的双胞体畸形区域。 模型参数具有直观的物理意义,并且与实验中使用的类似临界值有关,这不仅有助于获得最佳值,而且还便于解释和验证结果的简单化。

0
下载
关闭预览

相关内容

区块链白皮书,44页pdf
专知会员服务
91+阅读 · 2021年12月30日
2021年中国AI开发平台市场报告
专知会员服务
72+阅读 · 2021年10月26日
专知会员服务
39+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年11月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关VIP内容
区块链白皮书,44页pdf
专知会员服务
91+阅读 · 2021年12月30日
2021年中国AI开发平台市场报告
专知会员服务
72+阅读 · 2021年10月26日
专知会员服务
39+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年11月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员