Aeroengine performance is determined by temperature and pressure profiles along various axial stations within an engine. Given limited sensor measurements along an axial station, we require a statistically principled approach to inferring these profiles. In this paper, we detail a Bayesian methodology for interpolating the spatial temperature or pressure profile at a single axial station within an aeroengine. The profile is represented as a spatial Gaussian random field on an annulus, with circumferential variations modelled using a Fourier basis and a square exponential kernel respectively. In the scenario where precise frequencies comprising the temperature field are unknown, we utilise a sparsity-promoting prior on the frequencies to encourage sparse representations. The main quantity of interest, the spatial area average is readily obtained in closed form, and we demonstrate how to naturally decompose the posterior uncertainty into terms characterising insufficient sampling and sensor measurement error respectively. Finally, we demonstrate how this framework can be employed to enable more tailored design of experiments.
翻译:气动发动机性能由发动机内各轴站的温度和压力剖面决定。鉴于轴站沿线的传感器测量有限,我们需要一种统计原则性的方法来推断这些剖面。在本文中,我们详细介绍了在气动发动机内一个轴站空间温度或压力剖面间插贝ysian方法。该剖面在废墟上作为空间高萨随机场表示,以分别使用Fourier基基和正方形指数内核的模型进行环形变化。在包括温度场的精确频率未知的情况下,我们使用频率前的聚变法来鼓励稀薄的演示。主要的兴趣量是,空间平均空间面积很容易以封闭的形式获得,我们演示如何自然地将远地点的不确定性分解成分别描述不足的取样和传感器测量错误的术语。最后,我们展示了如何利用这一框架来进行更有针对性的实验设计。