In this paper, combining the ideas of exponential integrators and discrete gradients, we propose and analyze a new structure-preserving exponential scheme for the conservative or dissipative system $\dot{y} = Q(M y + \nabla U (y))$, where $Q$ is a $d\times d$ skew-symmetric or negative semidefinite real matrix, $M$ is a $d\times d$ symmetric real matrix, and $U : \mathbb{R}^d\rightarrow\mathbb{R}$ is a differentiable function. We present two properties of the new scheme. The paper is accompanied by numerical results that demonstrate the remarkable superiority of our new scheme in comparison with other structure-preserving schemes in the scientific literature.
翻译:本文结合指数集成器和离散梯度的概念,提出并分析保守或分散系统的新结构保存指数方案$\dt{y} =Q(M y +\nablaU(y))$,其中Q美元是美元(d) 乘以 skew-symetic 或负半无限制实际矩阵,M美元是美元(d) 乘以美元(d) d 对称真实矩阵,而$(U):\mathbb{Rád\rightharlo\mathb{R} 则是一个不同功能。我们介绍了新方案的两个特性。本文附有数字结果,表明我们的新方案相对于科学文献中的其他结构保存计划而言具有显著优势。