Graph Neural Networks (GNNs) have garnered a lot of recent interest because of their success in learning representations from graph-structured data across several critical applications in cloud and HPC. Owing to their unique compute and memory characteristics that come from an interplay between dense and sparse phases of computations, the emergence of reconfigurable dataflow (aka spatial) accelerators offers promise for acceleration by mapping optimized dataflows (i.e., computation order and parallelism) for both phases. The goal of this work is to characterize and understand the design-space of dataflow choices for running GNNs on spatial accelerators in order for the compilers to optimize the dataflow based on the workload. Specifically, we propose a taxonomy to describe all possible choices for mapping the dense and sparse phases of GNNs spatially and temporally over a spatial accelerator, capturing both the intra-phase dataflow and the inter-phase (pipelined) dataflow. Using this taxonomy, we do deep-dives into the cost and benefits of several dataflows and perform case studies on implications of hardware parameters for dataflows and value of flexibility to support pipelined execution.


翻译:最近,神经网络(GNNs)吸引了许多兴趣,因为它们成功地从云和HPC中若干关键应用的图形结构数据中学习了图形结构数据。由于计算过程的密集和稀少阶段之间的相互作用具有独特的计算和记忆特性,因此出现可重新配置的数据流(aka空间)加速器有可能通过绘制两个阶段的优化数据流(即计算顺序和平行)来加快速度。这项工作的目标是确定和理解在空间加速器上运行GNS的数据流选择的设计空间,以便编译者根据工作量优化数据流。具体地说,我们建议进行分类,说明在空间加速器上空间和时间上对GNNS的密集和稀少阶段进行绘图的所有可能选择,同时记录阶段内数据流和阶段间(管道线)数据流。我们利用这一分类,对若干数据流的成本和效益进行了深层次的调整,并进行关于对数据流到数据流值的硬件参数影响以及执行中导参数的灵活性的案例研究。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
已删除
将门创投
5+阅读 · 2019年4月15日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
已删除
将门创投
5+阅读 · 2019年4月15日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员