Most existing tests in the literature for model checking do not work in high dimension settings due to challenges arising from the "curse of dimensionality", or dependencies on the normality of parameter estimators. To address these challenges, we proposed a new goodness of fit test based on random projections for generalized linear models, when the dimension of covariates may substantially exceed the sample size. The tests only require the convergence rate of parameter estimators to derive the limiting distribution. The growing rate of the dimension is allowed to be of exponential order in relation to the sample size. As random projection converts covariates to one-dimensional space, our tests can detect the local alternative departing from the null at the rate of $n^{-1/2}h^{-1/4}$ where $h$ is the bandwidth, and $n$ is the sample size. This sensitive rate is not related to the dimension of covariates, and thus the "curse of dimensionality" for our tests would be largely alleviated. An interesting and unexpected result is that for randomly chosen projections, the resulting test statistics can be asymptotic independent. We then proposed combination methods to enhance the power performance of the tests. Detailed simulation studies and a real data analysis are conducted to illustrate the effectiveness of our methodology.
翻译:暂无翻译