The feature correlation layer serves as a key neural network module in numerous computer vision problems that involve dense correspondences between image pairs. It predicts a correspondence volume by evaluating dense scalar products between feature vectors extracted from pairs of locations in two images. However, this point-to-point feature comparison is insufficient when disambiguating multiple similar regions in an image, severely affecting the performance of the end task. We propose GOCor, a fully differentiable dense matching module, acting as a direct replacement to the feature correlation layer. The correspondence volume generated by our module is the result of an internal optimization procedure that explicitly accounts for similar regions in the scene. Moreover, our approach is capable of effectively learning spatial matching priors to resolve further matching ambiguities. We analyze our GOCor module in extensive ablative experiments. When integrated into state-of-the-art networks, our approach significantly outperforms the feature correlation layer for the tasks of geometric matching, optical flow, and dense semantic matching. The code and trained models will be made available at github.com/PruneTruong/GOCor.
翻译:特性相关层是一个关键的神经网络模块, 涉及图像配对之间密集对应的众多计算机视觉问题。 它通过在两个图像中评价从不同地点提取的特质矢量之间密集的星标产品来预测对应量。 但是, 当在图像中分解多个相似区域时, 点对点特征比较不够, 严重影响最终任务的表现 。 我们建议 GoCor, 是一个完全不同的密度匹配模块, 与特性相关层直接替换。 我们模块生成的对应量是内部优化程序的结果, 明确考虑到现场相似的区域 。 此外, 我们的方法能够有效地学习空间匹配前端, 以便进一步解决匹配的模糊问题 。 我们通过广泛的混合实验分析我们的 GoCor 模块 。 当整合到状态的网络时, 我们的方法大大超越了几何匹配、 光流和稠密的语系匹配任务的特征相关层 。 代码和经过培训的模型将在 guthub. com/ PruneTruong/ GOOCor 上提供 。