Steadily growing amounts of information, such as annually published scientific papers, have become so large that they elude an extensive manual analysis. Hence, to maintain an overview, automated methods for the mapping and visualization of knowledge domains are necessary and important, e.g., for scientific decision makers. Of particular interest in this field is the development of research topics of different entities (e.g., scientific authors and venues) over time. However, existing approaches for their analysis are only suitable for single entity types, such as venues, and they often do not capture the research topics or the time dimension in an easily interpretable manner. Hence, we propose a principled approach for \emph{mapping research trajectories}, which is applicable to all kinds of scientific entities that can be represented by sets of published papers. For this, we transfer ideas and principles from the geographic visualization domain, specifically trajectory maps and interactive geographic maps. Our visualizations depict the research topics of entities over time in a straightforward interpr. manner. They can be navigated by the user intuitively and restricted to specific elements of interest. The maps are derived from a corpus of research publications (i.e., titles and abstracts) through a combination of unsupervised machine learning methods. In a practical demonstrator application, we exemplify the proposed approach on a publication corpus from machine learning. We observe that our trajectory visualizations of 30 top machine learning venues and 1000 major authors in this field are well interpretable and are consistent with background knowledge drawn from the entities' publications. Next to producing interactive, interpr. visualizations supporting different kinds of analyses, our computed trajectories are suitable for trajectory mining applications in the future.
翻译:每年出版的科学论文等大量信息不断增长,其数量已变得如此之大,以至于无法进行广泛的人工分析。因此,为了保持概览,对知识领域进行绘图和可视化的自动化方法是必要的和重要的,例如科学决策者。这一领域特别感兴趣的是开发不同实体(例如科学作者和地点)的长期研究专题。然而,现有分析方法仅适合单一实体类型,如场地,往往不以易于解释的方式获取研究专题或时间层面。因此,我们提议对知识领域进行绘图和可视化的自动化方法。因此,我们建议对各种科学实体(例如科学作者和地点)都适用这种方法。在这方面,我们特别感兴趣的是开发不同实体(例如科学作者和地点)的研究专题,但是我们的现有可视化方法仅适合单个实体的类型,如地点等。它们往往不易解读取研究专题或时间层面。因此,我们提出了一种原则性方法,用于对可视化的直观和时间层面的研究主题进行跟踪。我们从模拟的直观的直观和直观应用中,从模拟的直观的直观的直径分析中,从模拟的直径判的直径判的直径解和直径判的直径判的直径判中,以及模拟的直判的直判的直判的直判的直判的直判的直判的直判的直判的直判的直判中,是从一个主判的直判的直判法系中,取取出地图系的直判法系的近判法系,从一个30版的直判法系的直判法系的直判法系和深判法系的直判法系中,从一个主。在主的直判法系的直判法系的直判法系的直判法系的直判法系的直判法系系的直判法系的直判法系的直判法系法系系,从。在主系的直判法系的直判法系和深取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取自于30版系的直判地。