Rapid developments of quantum information technology show promising opportunities for simulating quantum field theory in near-term quantum devices. In this work, we formulate the theory of (time-dependent) variational quantum simulation of the 1+1 dimensional $\lambda \phi^4$ quantum field theory including encoding, state preparation, and time evolution, with several numerical simulation results. These algorithms could be understood as near-term variational quantum circuit (quantum neural network) analogs of the Jordan-Lee-Preskill algorithm, the basic algorithm for simulating quantum field theory using universal quantum devices. Besides, we highlight the advantages of encoding with harmonic oscillator basis based on the LSZ reduction formula and several computational efficiency such as when implementing a bosonic version of the unitary coupled cluster ansatz to prepare initial states. We also discuss how to circumvent the "spectral crowding" problem in the quantum field theory simulation and appraise our algorithm by both state and subspace fidelities.
翻译:量子信息技术的快速发展展示了在近期量子装置中模拟量子场理论的极好机会。 在这项工作中,我们制定了1+1维的量子场理论的(时间依赖)变异量子模拟理论,包括编码、状态准备和时间进化,并附有数位模拟结果。这些算法可以被理解为约旦-Lee-Preskill 算法的近期变异量量子路(量子神经网络)类比,这是使用通用量子设备模拟量子场理论的基本算法。此外,我们强调了基于LSZ 削减公式和若干计算效率的以调和振荡器为基础进行编码的优点,例如实施单元组合集的单元体化版本,以准备初始状态。我们还讨论如何绕过量子场理论模拟中的“光谱聚集”问题,并用国家和次空间的精确度来评估我们的算法。