Despite the remarkable progress in neural models, their ability to generalize, a cornerstone for applications like logical reasoning, remains a critical challenge. We delineate two fundamental aspects of this ability: compositionality, the capacity to abstract atomic logical rules underlying complex inferences, and recursiveness, the aptitude to build intricate representations through iterative application of inference rules. In the literature, these two aspects are often confounded together under the umbrella term of generalization. To sharpen this distinction, we investigated the logical generalization capabilities of pre-trained large language models (LLMs) using the syllogistic fragment as a benchmark for natural language reasoning. Though simple, this fragment provides a foundational yet expressive subset of formal logic that supports controlled evaluation of essential reasoning abilities. Our findings reveal a significant disparity: while LLMs demonstrate reasonable proficiency in recursiveness, they struggle with compositionality. To overcome these limitations and establish a reliable logical prover, we propose a hybrid architecture integrating symbolic reasoning with neural computation. This synergistic interaction enables robust and efficient inference, neural components accelerate processing, while symbolic reasoning ensures completeness. Our experiments show that high efficiency is preserved even with relatively small neural components. As part of our proposed methodology, this analysis gives a rationale and highlights the potential of hybrid models to effectively address key generalization barriers in neural reasoning systems.
翻译:暂无翻译