KNX is one of the most popular protocols for a building automation system (BAS). However, its lack of security makes it subject to a variety of attacks. In this paper, we perform the first study of false data injection attack against a KNX based BAS. We design a man-in-the-middle (MITM) attack to change the data from a temperature sensor and inject false data to the BAS. We model the BAS system and formally analyze the impact of the false data injection attack on the system in term of energy cost. We find a small amount of erroneous input can incur significant energy cost, but is very hard to detect based on sensor data such as temperature alone. Since the MITM attack may disturb the KNX traffic pattern, we design a machine learning (ML) based detection strategy to detect the false data injection attack based on sophisticated features of the KNX telegram inter-arrival time. We perform real-world experiments and validate the presented false data injection attacks and ML detection strategy. We also simulate a BAS system and show that our proposed attack strategies can have a huge impact on BAS power consumption.
翻译:KNX是建筑自动化系统最受欢迎的程序之一。 但是,它的缺乏安全使得它受到各种攻击。 在本文中,我们第一次对基于KNX的BAS进行虚假数据注入攻击的研究。我们设计中途人(MITM)攻击,将数据从温度传感器上改变,并将虚假数据输入数据输入BAS。我们模拟BAS系统,并正式分析假数据注入攻击对系统的影响,从能源成本的角度来说。我们发现少量错误输入可能造成重大的能源成本,但很难根据温度等传感器数据进行探测。由于MITM攻击可能扰乱KNX的交通模式,我们设计了机器学习(ML)探测战略,以根据KNX电报跨入境时间的复杂特征探测假数据注入攻击。我们进行真实世界实验,并验证所提出的虚假数据注入攻击和ML探测战略。我们还模拟了BAS系统,并表明我们提出的攻击战略可能对BAS动力消耗产生巨大影响。