An innovations sequence of a time series is a sequence of independent and identically distributed random variables with which the original time series has a causal representation. The innovation at a time is statistically independent of the prior history of the time series. As such, it represents the new information contained at present but not in the past. Because of its simple probability structure, an innovations sequence is the most efficient signature of the original. Unlike the principle or independent analysis (PCA/ICA) representations, an innovations sequence preserves not only the complete statistical properties but also the temporal order of the original time series. An long-standing open problem is to find a computationally tractable way to extract an innovations sequence of non-Gaussian processes. This paper presents a deep learning approach, referred to as Innovations Autoencoder (IAE), that extracts innovations sequences using a causal convolutional neural network. An application of IAE to nonparametric anomaly detection with unknown anomaly and anomaly-free models is also presented.
翻译:时间序列的创新序列是独立且分布相同的随机变量序列,原始时间序列具有因果代表。 一次创新在统计上独立于时间序列的先前历史。 因此, 它代表了目前而不是过去的新信息。 由于它简单的概率结构, 创新序列是原始序列最有效的签名。 与原则或独立分析( PCA/ICA) 的表达方式不同, 创新序列不仅保留了完整的统计属性, 也保留了原始时间序列的时间顺序。 一个长期存在的未决问题是找到一种可计算可移动的方法, 以提取非Gausian进程的创新序列。 本文介绍了一种深层次的学习方法, 称为创新自动编码器( IAE), 利用因果共振神经网络来提取创新序列。 也介绍了IAE 用于以未知的异常和无异常模式进行非参数异常探测。