This paper analyzes wireless network control for remote estimation of linear time-invariant dynamical systems under various Hybrid Automatic Repeat Request (HARQ) packet retransmission schemes. In conventional HARQ, packet reliability increases gradually with additional packets; however, each retransmission maximally increases the Age of Information and causes severe degradation in estimation mean squared error (MSE) performance. We optimize standard HARQ schemes by allowing partial retransmissions to increase the packet reliability gradually and limit the AoI growth. In incremental redundancy HARQ, we optimize the retransmission time to enable the early arrival of the next status updates. In Chase combining HARQ, since packet length remains fixed, we allow retransmission and new updates in a single time slot using non-orthogonal signaling. Non-orthogonal retransmissions increase packet reliability without delaying the fresh updates. We formulate bi-objective optimization with the proposed variance of the MSE-based cost function and standard long-term average MSE cost function to guarantee short-term performance stability. Using the Markov decision process formulation, we find the optimal static and dynamic policies under the proposed HARQ schemes to improve MSE performance further. The simulation results show that the proposed HARQ-based policies are more robust and achieve significantly better and more stable MSE performance than standard HARQ-based policies.


翻译:本文分析了在各种混合自动重复请求(HARQ)包中远程估算线性时变动态系统的无线网络控制,以便根据各种混合自动重复请求(HARQ)包状再传输计划对线性时变动态系统进行远程估算。在常规的HARQ中,包的可靠性随着额外包件逐渐增加而增加;然而,每次再传输都最大限度地增加了信息年龄,在估计平均平方差错(MSE)性能时造成严重退化。我们优化标准HARQ计划,允许部分再传输,逐步提高包件可靠性,限制AoI增长。在增量冗余 HARQ中,我们优化了再传输时间,以便能够及早更新下一次状态更新。在大通中,由于包件长度保持不变,我们允许在单一的时间段内使用非垂直信号进行再传输和新更新。非垂直再传输会提高包件的可靠性,同时不延误更新。我们根据基于MSE的成本功能和基于标准的长期平均MSE的成本功能的拟议差异,制定了双目标优化,以保证短期性工作稳定性。我们发现,在Markov决策过程中,我们发现最佳的静态和动态更新政策比拟议的MAQ(MHAR)更稳定地改进了拟议的业绩政策。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员